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Introduction
According to the World Health Organization,  population 
older than 60 years would duplicate by 2050, with an 
increase from 900 million in 2015 to 2 billion elders 
worldwide(1). Aging is a natural and complex process 
with decline in physiological and cognitive functions, 
the velocity of establishment depends on intrinsic 
(genetics) and extrinsic (environment and lifestyles) 
factors. It also depends largely by the burden of 
chronic diseases throughout life (2, 3).

The benefits of physical activity and exercise 
include pulmonary, cardiovascular, hematopoietic, 
neurophysiologic, metabolic, and musculoskeletal 
adaptations.  Which protect against chronic diseases 
and along with a healthy diet and mental well-being, 
contribute to successful aging (2, 4, 5). Physical activity 
is associated with reduction in all-cause mortality and 

mortality of cardiovascular causes by 33% and 35% 
respectively, extending lifespan by one to two years (6-8)

Detraining refers to total or partial loss of exercise 
induced adaptations in response to a lack or reduction 
in training stimulus (9, 10). Its effects depend to an 
important extent on age, clinical conditions, type 
and intensity of previous training (9-11). The loss of 
adaptations also depends on timeof detraining(9-13).

In the past decades there has been a demographic 
shift with inversion of the population pyramid, this 
has expanded the number of adults over 65 years, 
among whom physical inactivity is frequent. With 
increasing age, a vicious circle is generated between 
deconditioning, perception of loss of functionality, 
physical inactivity, and sedentary lifestyle. Thus, in 
older adults where the burden of chronic diseases 
is higher, knowledge of detraining becomes as 
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Abstract

With population aging, physical activity is among the factors that determine quality of life. A considerable 
numberof elders do not meet the minimum requirements for physical activity or are sedentary. Moreover, adults 
who were physically active can decrease their activity due to diseases or even the confinement generated by 
the SARS-CoV-2 pandemic. Therefore, it is important to describe the characteristics of detraining in the elderly 
populationto determine how detraining impacts the biological systems of human body, and the deleterious 
effects that converge with aging per se, making it difficult to determine the influence of each in the physical 
health of individuals.

It is remarkable how quickly the deleterious effects of detraining occur, which shows the importance of 
maintaining a physically active life at the appropriate intensity throughout life. The aim of this review is to 
describe the effects of training cessation on the cardiovascular, pulmonary, metabolic, and musculoskeletal 
systems.
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important as knowing the benefits and adaptations of 
physical activity, because it regulates the time frame 
of protective effects loss, and will be associated with 
greater fragility, morbidity and mortality typical of 
this age group(2, 14-16).

Cardiovascular System
There is a strong association between cardiovascular 
effects of exercise and reduction in mortality(6-8). 
Explained by enhanced endothelial function, greater 
coronary flow reserve, autonomic modulation, 
greater capillary density, reduction in blood pressure 
and arterial stiffness (17, 18). Additionally there is 
an increase in plasma volume, end diastolic volume, 
systolic volume and improvement in cardiac output 
(17, 18), that along with additional adaptations, 
improves maximal oxygen uptake (19). 

These changes in volume and pressure will 
eventually lead to cardiac structural changes due 
to long-term adaptations, like increased heart size, 
increased cavity volume and wall thickness (17, 20). 
Regarding vascular adaptations, there is an increase 
in endothelial turnover with a decrease in pressor 
responses to sympathetic activity, an increase in 
angiogenesis at both the peripheral (muscular) and 
central (cardiopulmonary) levels (18, 19, 21).

Additionally, the reduction of cardiovascular risk, 
seems to be associated with improvement of 
endothelial function that leads to the stabilization of 
atheromatous plaques, reducing the risk of coronary 
ischemic event, as well as sudden death by the 
improvement of autonomic control (8, 18, 21). 

Cardiovascular effects of detraining are inversely 
related to the time and adaptations previously 
obtained (9, 10). Thus, the longer the time of cessation 
of physical activity and the lower previous fitness, 
the cardiovascular consequences of detraining will 
be greater and earlier (9-12). The decrease in blood 
volume is the earliest modification of detraining and 
will be partly responsible for thedecrease in oxygen 
consumption. 10 days after the suspension of the 
training stimulus, it has been described a decrease 
between 9% to 12% after 2 weeks in endurance 
athletes, associated to diminished plasma proteins 
and red blood cells (9, 22, 23).

Regarding heart rate, there is no significant increase 
in heart rate at rest with acute detraining (10 days), 
however, changes of 5-10% are noted in maximal and 

submaximal intensities. Returning to baseline can 
take months, it has even been described that in highly 
trained subjects the maximum heart rate may not 
return to baseline(9-13). 

Systolic volume can be reduced by 10-17% over a 
period of 12 days to 8 weeks, with a 12% reduction 
in end-diastolic ventricular dimensions by one month. 
(9-13, 24). In relation to cardiac output (CO), the 
increase in heart rate does not completely offset the 
decrease in plasma volume, which ultimately results 
in a decrease in cardiac output, approximately 8% 
and 10% in a period of 21 and 90 days of inactivity 
respectively (9-13).

The cardiac structural changes takelonger and will 
be reflected in a decrease in cardiac mass and size of 
the cavities, as well as reduction inthickness of the 
left ventricular wall. Significant changes have been 
described in periods longer than 8 weeks with a return 
to baselineafter 4 months of detraining(9, 13, 25).

In older adults there is a higher prevalence of chronic 
diseases associated with vascular impairment, 
oxidative stress, and reduced antioxidant capacity. 
These variations are associated with disruption of 
endothelial function, increased risk of atherosclerosis 
and cardiovascular disease(26, 27). Endothelial 
progenitor cells (EPC) and vascular endothelial 
growth factor (VEGF) help maintain vascular integrity; 
therefore their reduction is associated with endothelial 
disfunction, coronary ischemic events and death from 
cardiovascular disease(28-32).

EPC are sensitive to changes in redox potential and have 
a high expression of antioxidant enzymes, therefore 
interruptions in the redox state can negatively affect 
their function (27, 32, 33). Low-density lipoproteins 
(LDL) have an atherogenic potential and additionally 
decrease the number of EPC, their proliferative 
capacity, migration and adhesion (32, 34).

Exercise can increase the number and function of EPC 
by enhancing redox and antioxidant capacity (26, 27, 
29, 30). In the short term, an increase in EPC has been 
described in response to exercise both in healthy older 
adults and in older adults with risk factors or already 
established cardiovascular disease (32, 35, 36). In 
the long term, increase in EPC has been described in 
elders with cardiovascular disease but not healthy 
elders (32, 35, 37, 38). Detraining relates to loss of the 
antioxidant capacity within a time frame that depends 
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on the intensity and mode of the previous training 
(27). Witkowski et al. studied healthy older adults 
with a history of more than 30 years of moderate 
to high exercise intensity, and found after 10 days 
of detraining, a significant decrease in the vascular 
endothelial growth factor receptor (VEGFR2) and 
EPC. This reflects that alterations of oxidative stress 
in detraining in older adults may be related to loss of 
the cardiovascular protective mechanism(32).

Respiratory System
In the respiratory system detraining changes can be 
described according to the time of cessation of stimuli, 
in short (4 weeks) or long term (more than 4 weeks)(9, 
11, 12). Regarding the maximal oxygen consumption 
(VO2max), it has been described decreases with periods 
of cessation of training as short as 2 weeks, and it seems, 
that at higher previous values of VO2max, greater is 
the decline with detraining (11, 39). It is estimated 
that the change ranges between 4 and 14%, in highly 
trained athletes. However, for recently trained people, 
this decrease is less noticeable, hovering between 4% 
and 6% after 4 weeks of detraining (11). For highly 
trained individuals, prolonged cessation of training 
results in a progressive decrease in VO2 during the first 
8 weeks with subsequent stabilization, still reporting 
higher values than sedentary people. Recently trained 
individuals with prolonged detraining results in the 
total loss of the gains obtained in VO2max(12, 39).

Among the most characteristic changes with detraining 
are the decrease in ventilatory function measured by 
the decrease in the values of the maximum ventilatory 
volume, decrease in the oxygen pulse and a secondary 
increase in the ventilatory equivalent of oxygen (11). 
Decreases of up to 14% in maximum ventilatory volume 
have been reported in highly trained individuals 
during prolonged periods of detraining, along with 
a marked increase in the respiratory equivalent for 
oxygen during submaximal exercise and decrease in 
the oxygen pulse(12). Similar effects are described 
on ventilatory function in recently trained individuals 
with long term detraining.

It is important to contrast the changes in lung 
parameters triggered with aging, since both 
detraining and aging, can have deleterious effects 
on lung function and structure. The most relevant 
changes in lung function linked to the aging process 
are decrease in vital capacity, forced vital capacity and 

forced expiratory volume in the first second (FEV1) 
(40, 41). Additionally, decrease in residual volume 
and functional reserve have been reported in healthy 
adults in relation to increasing age(40, 42).

Changes in the composition of lung tissue and 
remodeling have been related to a decrease in lung 
elastic recoil, which can be expressed as a measure of 
high compliance, similar to that of an emphysematous 
lung (40, 43, 44). Many conclusions on aging and 
changes in lung function have been made on research 
in animals (mainly mice). Schulte et al. (40), carried out 
an important investigation with mice, finding changes 
in lung physiology at different moments of life. They 
were able to determine structural changes in older 
mice, given by increased lung volume and widening 
of the alveolar ducts. An additional effect was the 
development of late alveolarization,accompanied by 
a reduction in alveolar size. The lungs do not express 
homogeneous mechanical responses to changes in air 
volumes (45). This may correspond to the variations 
of specific compartments (airway, parenchyma, blood 
vessels) and their functional needs (45-47).

Sicard et al. demonstrated greater stiffness in the 
vascular and pulmonary parenchyma compartments 
by increasing the elastic modulus, a capacity related to 
the resistance of a material to be elastically deformed 
during an applied tension (41, 45, 48). These results 
support that changes in lung architecture play a 
determining role in the increase in compliance with 
aging (40, 45, 49).

Stiffness of the pulmonary vessels, increased 
pressures in the pulmonary circulation, and increased 
resistance of the pulmonary vascular bed have 
been frequently associated with normal aging in 
healthy adults. However, these changes do not seem 
to limit the capacity of older adults to exercise, it is 
compensated by a pulmonary vascular expansion and 
an effective recruitment of the capillary and alveolus 
surface (50,51).

Coffman et al. (51) stipulate that in aging there 
is a decrease the pulmonary diffusion capacity of 
carbon monoxide (DLCO),  related to a decrease in 
the pulmonary capillary surface area. Following 
this reasoning, a reduced response in lung diffusion 
capacity should be expected during exercise in 
older adults. However, age-related decline in lung 
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function does not appear to affect the response 
of the pulmonary capillary network during 
exercise in healthy individuals, regardless of age 
or cardiorespiratory fitness. Therefore, pulmonary 
responses to exercise such as pulmonary capillary 
distention and recruitment results in an adequate 
expansion of the capillary surface area, which allows 
an adequate diffusion capacity for the metabolic 
demands of exercise, independent of fitness or age (51, 52).

In addition, the researchers showed that highly trained 
elderly had a higher (DLCO) and greater conductance 
of the alveolar-capillary membrane during maximal 
exercise compared to results of untrained elderly 
(51). Further studies are needed to understand the 
influence of better cardiorespiratory fitness in elders 
and pulmonary function due to aging, and the impact 
of detraining.

Musculoskeletal System
Loss of muscle mass and functionality is an important 
characteristic of aging, which is associated with high 
risk of falls(53, 54), it is estimated that one third of 
people over 65 years suffer a fall annually (55). These 
events can be mitigated through exercise, especially 
focused on balance and strength, because they improve 
postural control and physical function (56).

Additionally, in older adults, there is atrophy of type 
IIa and IIx fibers, as well as reduction in the number of 
myofibrils (57, 58). Exercise has been associated with 
maintenance of these fibers, better muscle quality 
(54) and maintenance of mitochondrial function(59). 
With detraining, the acquired distribution is lost and 
IIa fibers are transformed into IIa, in addition there 
is a decrease in size and muscle strength, changes 
observed in periods greater than 4 weeks of cessation 
of physical stimuli(9, 10, 22).

Preserving muscle mass requires mechanical stimuli 
for anabolism, if it stops, the protein turnover, given 
by the difference between synthesis and degradation, 
tends to be negative (60). A study in young people 
showed that the disuse of one leg for 3 weeks, resulted 
in muscle loss of 5% after 10 days and 10% after 21 
days (61). Just as decrease in muscle protein synthesis 
in immobilization has been described in young people, 
this phenomenon has also been described in the 
elderly, and is called “anabolic resistance” (54).

Aging is associated with changes in the properties of 
the motor units, as well as their loss, this is relevant 
because the force produced in muscle contractions 
depends on the rate of discharge of the action potentials 
and the recruitment of motor units. Exercise becomes 
important as it protects against muscle denervation 
associated with aging (57, 60).

Studies comparing changes in strength have been 
developed in different age groups with detraining. 
Lemmer, et al (10) described loss of 8% strength in 
people between 20-30 years, compared to loss of 
14% in people between 65-75 years, after 31 weeks 
of detraining. Additionally, Toreman and Ayceman, 
described that performance and flexibility are more 
affected in people between 74-86 years than in people 
between 60 - 73 years. Which would imply differences 
by age group among the elderly (10).

Handgrip strength is an indicator of fragility,  
propensity to fall and physical functionality. A study 
evaluated the impact on quality of life and handgrip 
strength after 3 months of detraining in individuals 
with a mean age of 75 years, previously physically 
active. The authors describe a decrease in most 
dimensions of the SF-36 quality of life questionnaire 
after detraining, especially in women, with no change 
in handgrip strength (55).

At the capillary level, training adaptations optimizes 
the distribution, uptake and use of oxygen by increasing 
the capillary density and increasing myoglobin (18).
These effects regress with detraining, with no evidence 
of decrease in muscle myoglobin levels (9, 62-64).

Endocrine System
The adaptations related to training are a set of 
modifications in different body systems. The endocrine 
system is one of them, with changes in catecholamine 
levels during and after exercise, as well as growth 
hormone levels, cortisol, thyroxine, testosterone, 
insulin, glucagon and  renin-angiotensin-aldosterone 
system (18, 65, 67).

The effects of training on metabolism are well known 
and are related to optimization of physiological 
processes and improvement on performance (18, 65). 
The metabolic changes that training entails are closely 
related to the type of exercise, because of specific 
metabolic needs, especially the dependence or not of 
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oxygen. This generates specific changes in the type 
of muscle fibers, capillary supply, myoglobin content, 
mitochondrial function, oxidative enzymes, storage 
and use of metabolic substrates (18, 65).

Regarding the optimization of oxygen-dependent 
metabolic processes, the most relevant changes 
occur at the mitochondrial level, with an increase in 
the number and size of these organelles, increased 
enzyme activity (18, 65) and oxidative capacity.

Another important aspect is the storage capacity and 
use of energy sources during exercise. Among the most 
prominent considerations is a greater glycogen reserve 
with slower depletion, thanks to a greater efficiency in 
fat oxidation (18, 65). Likewise, in strength training 
metabolic adaptations are also generated. One to 
highlight is the increase in adenosine triphosphate-
phosphocreatine (ATP-PC) and glycolytic enzymes 
(18, 66).

Baker et al. In two studies published in 2003 and 
2010, showed performance declines with increasing 
age, clarifying that some attributes tend to decrease 
with greater speed(68, 69). Such effects are explained 
by the physiological changes of aging (14, 15, 70).
The impact of aging on performance is given by a 
deterioration in VO2 max. (68-70). The metabolic and 
endocrine factors that contribute to the decrease in 
VO2 max are due to structural muscular changes, and a 
decrease of lean mass (14), this translates into a lower 
oxygen uptake by the active muscles, in addition to a 
decrease in the sympathetic response and maximum 
heart rate (70, 71).

Although VO2max is one of  the most studied factors 
of the deterioration in performance, there are other 
metabolic and endocrine changes associated as 
decreased levels of testosterone, growth hormone, 
Insulin-like growth factors and dehydroepiandro 
sterone (DHEA) (54, 72, 73); hormones that change 
concentrations during and after exercise, as an acute 
and adaptive response to this stimulus (18, 65, 67). 

It can be understood that detraining in the elderly 
population has special considerations, among them, 
a greater impact on the physical fitness, especially 
aerobic endurance (74). With detraining there 
is a decrease in mitochondrial mass, increase in 
respiratory exchange ratio and changes in lactate 

concentration(9, 10, 13). Decreasing in mitochondrial 
mass is reflected in decreased oxidative enzyme 
activity in the first 8 weeks of inactivity (10, 75). 
R. Wibom et al. also demonstrated that the rate of 
mitochondrial production of ATP improves with 
training but decreases rapidly with the loss of this 
stimulus (76). More recent studies such as the one 
carried out by C Granata et al. show that the decrease 
in training volume has an impact in reversing adaptive 
mitochondrial effects (77).

The use of metabolic substrates alsochanges, 
withdecreased oxidative activity, lipid metabolism 
is reduced, increasing dependence on glycolytic 
metabolism. This change explains an increase in the 
respiratory quotient, that can be observed between 2 
to 4 weeks of inactivity (9, 10, 13, 75, 78). Consequently, 
lactate concentrations tend to increase with lower 
intensities and the lactate threshold decreases 
progressively from the first 7 days of cessation (9, 10, 
13, 75, 78).

Studies have found changes in the concentrations 
of lipoprotein lipase (LPL) in adipose and muscular 
tissue as a consequence of detraining (9, 13), RB 
Simsolo et al. found decreased activity of LPL in muscle 
and increased adipose tissue, in healthy athletes 
after a detraining period of 2 weeks. This favors 
the accumulation of adipose tissue and therefore 
alteration of the lipid profile with especially increased 
low-density lipoproteins and triglycerides (9, 79, 80). 

These metabolic changes occur simultaneously 
to endocrine modifications, with multiple studies 
showing a decrease in insulin sensitivity (13, 79), 
marked increase in plasma insulin levels  and blood 
glucose levels unchanged (79, 81). The decrease in 
insulin sensitivity is mainly mediated by changes in 
the number of receptors to this hormone (13). A clear 
example of this is the return to baseline in the number 
of GLUT4 after detraining periods (9, 13, 79, 82) as 
demonstrated by Michael McCoy et al. who found a 
decrease in the number of these proteins from the 
10th day of inactivity in trained men (83).

As mentioned above there are several physiological 
changes related to aging as there are to training and 
detraining. The table 1 summarizes the effects of 
detraining previously described. 
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Table 1. Effects of detraining in the different systems

HUMAN BODY SYSTEMS EFFECTS OF DETRAINING CLINICAL IMPACT

CARDIOVASCULAR
Decreased blood volume: diminished plasma proteins 

and red blood cells.

Decrease in oxygen 
consumption,

Loss of the cardiovascular 
protective mechanisms.

Increased heart rate: First in maximal and submaximal 
exercise.

Reduced systolic volume.

Decreased cardiac output.

Decrease in cardiac mass, cavity sizes, and thickness of 
the left ventricular wall.

Decreased redox and antioxidant capacity (by decrease in
VEGFR2 and EPC).

RESPIRATORY Reduced maximum ventilatory volume.
Decrease in oxygen 

consumption (stabilization 
after 8 weeks approx.).
Decrease in ventilatory 

function.

Decrease in DLCO and conductance of the alveolar-
capillary membrane during maximal exercise.

Decreased oxygen pulse.

Increased ventilatory equivalent of oxygen.

MUSCULOSKELETAL

 MUSCULOSKELETAL

Atrophy of type IIa and IIx fibers, reduction in the 
number of myofibrils

Loss of muscle mass and 
functionality.

High risk of falls.

Decreased muscle size, strength, and flexibility.

Decreased muscle protein synthesis (“anabolic 
resistance”).

Decreased muscle capillary density (less uptake and use 
of oxygen).

METABOLIC Diminished mitochondrial mass. (decreased oxidative 
enzyme activity).

Change in the use of 
metabolic substrates.

Accumulation of adipose 
tissue and alteration of the 
lipid profile (increased LDL 

and triglycerides).

Increased risk of chronic 
diseases as diabetes, 
high blood pressure, 

dyslipidemia, etc.

Changes in lactate concentration (increases with lower 
intensities and lactate threshold decreases).

Reduced lipid metabolism, increasing dependence 
on glycolytic metabolism: Increase in the respiratory 

quotient.

Decreased activity of LPL in muscle and increased 
adipose tissue.

Decrease in insulin sensitivity (by changes in the number 
of hormone receptors, eg. Reduction in the number of 

GLUT4)

VEGFR2: vascular endothelial growth factor receptor, EPC: Endothelial progenitor cells, DLCO: pulmonary diffusion capacity 
of carbon monoxide, LPL lipoprotein lipase. LDL: low-density lipoproteins. *The exact chronology of these events in older 
adults is limited, much of the evidence is based on the general population and not exclusively on the mature population.
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Conclusions 
Time periods in which the loss of the adaptations 
occur have been analyzed in multiple studies, 
however, evidence regarding chronology of events 
in older adults is limited. Adaptations generated by 
different types of training are reversible and can be 
influenced by multiple factors. Within these, age 
should be considered, the physiological changes 
associated suggest this population may have earlier 
and greater changes. Evidence regarding this point is 
limited, therefore more studies are needed to clarify 
the impact of detraining in this age group.
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